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• Relations and Their Properties.

• Representing Relations.

• Closures of Relations.

• Equivalence Relations.

• Partial Orderings.

Chapter 9: Relations
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Relations and Their Properties (1/30)

Discrete Mathematics

Introduction (1/2)

Relationships between elements of sets are represented 

using the structure called a relation, which is just a subset 

of the Cartesian product of the sets.

In mathematics, we study relationships such as those 

between a positive integer and one that it divides, an 

integer and one that it is congruent to modulo 5, a real 

number and one that is larger than it, a real number 𝑥 and 

the value 𝑓(𝑥) where 𝑓 is a function, and so on.
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Relations and Their Properties (1/30)

Discrete Mathematics

Introduction (2/2)

The most direct way to express a relationship between 

elements of two sets is to use ordered pairs made up of two 

related elements. For this reason, sets of ordered pairs are 

called binary relations.



5©Ahmed Hagag

Relations and Their Properties (2/30)

Discrete Mathematics

Definition 1:

Let 𝐴 and 𝐵 be sets. A binary relation from 𝐴 to 𝐵 is a 

subset of 𝐴 × 𝐵.

A binary relation from 𝐴 to 𝐵 is a set 𝑅 of ordered pairs 

where the first element of each ordered pair comes from 𝐴
and the second element comes from 𝐵. 

We use the notation 𝑎 𝑅 𝑏 to denote that (𝑎, 𝑏) ∈ 𝑅 and 

𝑎 𝑅 𝑏 to denote that (𝑎, 𝑏) ∉ 𝑅. Moreover, when 

(𝑎, 𝑏) belongs to 𝑅, 𝑎 is said to be related to 𝑏 by 𝑅.
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Example 1:

Let 𝐴 = {0, 1 , 2} and 𝐵 = {𝑎 , 𝑏}. 

Then {(𝟎, 𝒂), (𝟎, 𝒃), (𝟏, 𝒂), (𝟐, 𝒃)} is a relation from 𝐴 to 𝐵.

𝑅 = {(0, 𝑎), (0, 𝑏), (1, 𝑎), (2, 𝑏)}

Relations and Their Properties (3/30)

Roster notation (Roster form of set):
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Example 1:

Let 𝐴 = {0, 1 , 2} and 𝐵 = {𝑎 , 𝑏}. 

Then {(𝟎, 𝒂), (𝟎, 𝒃), (𝟏, 𝒂), (𝟐, 𝒃)} is a relation from 𝐴 to 𝐵.

Relations and Their Properties (3/30)

Using arrows 

Using table 
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Relations and Their Properties (4/30)

Discrete Mathematics

Functions as Relations

Recall that a function f from a set 𝐴 to a set 𝐵 assigns 

exactly one element of 𝐵 to each element of 𝐴. The graph 

of 𝑓 is the set of ordered pairs (𝑎 , 𝑏) such that 𝑏 = 𝑓(𝑎). 
Because the graph of 𝑓 is a subset of 𝐴 × 𝐵, it is a relation 

from 𝐴 to 𝐵.
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Relations and Their Properties (5/30)

Discrete Mathematics

Relations on a Set

Definitions: 

• A relation on the set 𝐴 is a relation from 𝐴 to 𝐴. In other 

words, a relation on a set 𝐴 is a subset of 𝐴 × 𝐴.

• The identity relation 𝐼𝐴 on a set 𝐴 is the set 𝑎, 𝑎 𝑎 ∈ 𝐴

• Ex. If 𝐴 = 1, 2, 3 , then 𝐼𝐴 = 1, 1 , 2, 2 , 3, 3
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Example 2:

Let 𝐴 be the set {1, 2, 3 , 4}. Which ordered pairs are in the relation 

𝑅 = {(𝑎 , 𝑏)|𝑎 divides 𝑏} ?

Relations and Their Properties (6/30)
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Example 2:

Let 𝐴 be the set {1, 2, 3 , 4}. Which ordered pairs are in the relation 

𝑅 = {(𝑎 , 𝑏)|𝑎 divides 𝑏} ?

𝑅 = {(𝑎 , 𝑏)|𝑎 divides 𝑏}

Relations and Their Properties (6/30)

Set builder notation:
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Example 2:

Let 𝐴 be the set {1, 2, 3 , 4}. Which ordered pairs are in the relation 

𝑅 = {(𝑎 , 𝑏)|𝑎 divides 𝑏} ?

Relations and Their Properties (6/30)

May change 
to be:

𝑎 = 𝑏
𝑎 > 𝑏
𝑎 < 𝑏
…



13©Ahmed Hagag Discrete Mathematics

Example 2:

Let 𝐴 be the set {1, 2, 3 , 4}. Which ordered pairs are in the relation 

𝑅 = {(𝑎 , 𝑏)|𝑎 divides 𝑏} ?

𝑅 = 1 , 1 , 1 , 2 , 1 , 3 , 1 , 4 , 2, 2 , 2, 4 , 3 , 3 , 4, 4

Solution:

Relations and Their Properties (6/30)
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Example 3:

Let 𝐴 be the set −1, 0, 1, 2 . Which ordered pairs are in the 

following relations: 

𝑅1 = {(𝑎 , 𝑏)|𝑎 < 𝑏}

𝑅2 = {(𝑎 , 𝑏)|𝑎 > 𝑏}

𝑅3 = {(𝑎 , 𝑏)|𝑎 = 𝑏}

𝑅4 = {(𝑎 , 𝑏)|𝑎 = −𝑏}

𝑅5 = {(𝑎 , 𝑏)|𝑎 = 𝑏 or 𝑎 = −𝑏}

𝑅6 = 𝑎 , 𝑏 0 ≤ 𝑎 + 𝑏 ≤ 1

Relations and Their Properties (7/30)
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Example 3:

Let 𝐴 be the set −1, 0, 1, 2 . Which ordered pairs are in the 

following relations: 

𝑅1 = 𝑎 , 𝑏 𝑎 < 𝑏

= { −1, 0 , −1, 1 , −1, 2 , 0, 1 , 0, 2 , 1, 2 }

Relations and Their Properties (7/30)

Solution:
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Example 3:

Let 𝐴 be the set −1, 0, 1, 2 . Which ordered pairs are in the 

following relations: 

𝑅2 = 𝑎 , 𝑏 𝑎 > 𝑏

= { 0,−1 , 1, 0 , 1,−1 , 2, 1 , 2, 0 , 2,−1 }

Relations and Their Properties (7/30)

Solution:
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Example 3:

Let 𝐴 be the set −1, 0, 1, 2 . Which ordered pairs are in the 

following relations: 

𝑅3 = {(𝑎 , 𝑏)|𝑎 = 𝑏}

= −1,−1 , 0, 0 , 1, 1 , 2, 2

Relations and Their Properties (7/30)

Solution:
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Example 3:

Let 𝐴 be the set −1, 0, 1, 2 . Which ordered pairs are in the 

following relations: 

𝑅4 = {(𝑎 , 𝑏)|𝑎 = −𝑏}

= −1, 1 , 0, 0 , 1, −1

Relations and Their Properties (7/30)

Solution:
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Example 3:

Let 𝐴 be the set −1, 0, 1, 2 . Which ordered pairs are in the 

following relations: 

𝑅3 = {(𝑎 , 𝑏)|𝑎 = 𝑏} = −1,−1 , 0, 0 , 1, 1 , 2, 2

𝑅4 = {(𝑎 , 𝑏)|𝑎 = −𝑏} = −1, 1 , 0, 0 , 1,−1

𝑅5 = {(𝑎 , 𝑏)|𝑎 = 𝑏 or 𝑎 = −𝑏}

= −1,−1 , 0, 0 , 1, 1 , 2, 2 , −1, 1 , 1, −1

Relations and Their Properties (7/30)

Solution:
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Example 3:

Let 𝐴 be the set −1, 0, 1, 2 . Which ordered pairs are in the 

following relations: 

𝑅6 = 𝑎 , 𝑏 0 ≤ 𝑎 + 𝑏 ≤ 1

= −1, 1 , −1, 2 , 0, 0 , 0, 1 , 1,−1 , 1, 0 , 2,−1

Relations and Their Properties (7/30)

Solution:
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Example 4:

How many relations are there on a set with 𝑛 elements?

It is not hard to determine the number of relations on a finite set, 

because a relation on a set 𝐴 is simply a subset of 𝐴 × 𝐴.

Note: 𝐴 × 𝐴 = 𝐴 2 = 𝑛2

Relations and Their Properties (8/30)
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Example 4:

How many relations are there on a set with 𝑛 elements?

It is not hard to determine the number of relations on a finite set, 

because a relation on a set 𝐴 is simply a subset of 𝐴 × 𝐴.

Note: 𝐴 × 𝐴 = 𝐴 2 = 𝑛2

A relation on a set 𝐴 is a subset of 𝐴 × 𝐴. Because 𝐴 × 𝐴 has 𝑛2

elements when 𝐴 has 𝑛 elements, there are 2𝑛
2

subsets of 𝐴 × 𝐴.

Relations and Their Properties (8/30)

Solution:
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Relations and Their Properties (9/30)

Discrete Mathematics

Properties of Relations

There are several properties that are used to classify 

relations on a set. We will introduce the most important of 

these relations.

• Reflexive

• Irreflexive

• Symmetric

• Antisymmetric

• Transitive
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Relations and Their Properties (10/30)

Discrete Mathematics

Reflexive and Irreflexive

A relation 𝑅 on a set 𝐴 is called reflexive if (𝑎, 𝑎) ∈ 𝑅 for 

every element 𝑎 ∈ 𝐴.

A relation 𝑅 on a set 𝐴 is called irreflexive if (𝑎, 𝑎) ∉ 𝑅 for 

every element 𝑎 ∈ 𝐴.

not reflexive ≠ irreflexive
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Example 1:

Consider the following relations on 1, 2, 3, 4 are reflexive or 

irreflexive or not?

Relations and Their Properties (11/30)
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Example 1:

Consider the following relations on 1, 2, 3, 4 are reflexive or 

irreflexive or not?

Relations and Their Properties (11/30)

Solution: 𝑅3 and 𝑅5 are reflexive
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Example 1:

Consider the following relations on 1, 2, 3, 4 are reflexive or 

irreflexive or not?

Relations and Their Properties (11/30)

Solution: 𝑅3 and 𝑅5 are reflexive 𝑅4 and 𝑅6 are irreflexive
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Example 1:

Consider the following relations on 1, 2, 3, 4 are reflexive or 

irreflexive or not?

Relations and Their Properties (11/30)

Solution: 𝑅3 and 𝑅5 are reflexive 𝑅4 and 𝑅6 are irreflexive 𝑅1 and 𝑅2 are 

Not reflexive

Not irreflexive
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Example 2:

Is the "divides" relation on the set of positive integers reflexive?

Relations and Their Properties (12/30)
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Example 2:

Is the "divides" relation on the set of positive integers reflexive?

Because 𝑎|𝑎 whenever 𝑎 is a positive integer, the "divides" relation is 

reflexive.

Relations and Their Properties (12/30)

Solution:
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Example 3:

Is the "divides" relation on the set of integers reflexive?

Relations and Their Properties (13/30)
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Example 3:

Is the "divides" relation on the set of integers reflexive?

The relation is not reflexive because 0 does not divide 0.

Relations and Their Properties (13/30)

Solution:
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Example 4:

Is the following relations on the integers are reflexive or not?

𝑅1 = {(𝑎 , 𝑏)|𝑎 ≤ 𝑏}

𝑅2 = {(𝑎 , 𝑏)|𝑎 > 𝑏}

𝑅3 = {(𝑎 , 𝑏)|𝑎 = 𝑏}

𝑅4 = {(𝑎 , 𝑏)|𝑎 = 𝑏 + 1}

𝑅5 = {(𝑎 , 𝑏)|𝑎 = 𝑏 or 𝑎 = −𝑏}

𝑅6 = 𝑎 , 𝑏 𝑎 + 𝑏 ≤ 3

Relations and Their Properties (14/30)
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Example 4:

Is the following relations on the integers are reflexive or not?

𝑅1 = {(𝑎 , 𝑏)|𝑎 ≤ 𝑏}

𝑅2 = {(𝑎 , 𝑏)|𝑎 > 𝑏}

𝑅3 = {(𝑎 , 𝑏)|𝑎 = 𝑏}

𝑅4 = {(𝑎 , 𝑏)|𝑎 = 𝑏 + 1}

𝑅5 = {(𝑎 , 𝑏)|𝑎 = 𝑏 or 𝑎 = −𝑏}

𝑅6 = 𝑎 , 𝑏 𝑎 + 𝑏 ≤ 3

Relations and Their Properties (14/30)

Solution: 𝑅1, 𝑅3, and 𝑅5 are reflexive
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Example 4:

Is the following relations on the integers are reflexive or not?

𝑅1 = {(𝑎 , 𝑏)|𝑎 ≤ 𝑏}

𝑅2 = {(𝑎 , 𝑏)|𝑎 > 𝑏} (Counter example, 2 ≯ 2)

𝑅3 = {(𝑎 , 𝑏)|𝑎 = 𝑏}

𝑅4 = {(𝑎 , 𝑏)|𝑎 = 𝑏 + 1} (Counter example, 2 ≠ 2 + 1)

𝑅5 = {(𝑎 , 𝑏)|𝑎 = 𝑏 or 𝑎 = −𝑏}

𝑅6 = 𝑎 , 𝑏 𝑎 + 𝑏 ≤ 3 (Counter example, 2 + 2 ≰ 3)

Relations and Their Properties (14/30)

Solution: 𝑅1, 𝑅3, and 𝑅5 are reflexive 𝑅2, 𝑅4, and 𝑅6 are not reflexive
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Relations and Their Properties (15/30)

Discrete Mathematics

Symmetric and Antisymmetric

A relation 𝑅 on a set 𝐴 is called symmetric 

if (𝑏, 𝑎) ∈ 𝑅 whenever (𝑎, 𝑏) ∈ 𝑅, for all 𝑎 , 𝑏 ∈ 𝐴.

---------------------------------------------------------------

A relation 𝑅 on a set 𝐴 such that for all 𝑎 , 𝑏 ∈ 𝐴, 

if (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑎) ∈ 𝑅 , then 𝑎 = 𝑏
is called antisymmetric.



37©Ahmed Hagag Discrete Mathematics

Example 4:

Which of the following relations are symmetric and which are 

antisymmetric?

Relations and Their Properties (16/30)

𝑅7 = 1,1 , 2,2 .
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Example 4:

Which of the following relations are symmetric and which are 

antisymmetric?

Relations and Their Properties (16/30)

𝑅7 = 1,1 , 2,2 .

Solution:

symmetric 

symmetric 

antisymmetric 

antisymmetric 
antisymmetric 

symmetric and antisymmetric 
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Example 5:

Is the "divides" relation on the set of positive integers symmetric?

Relations and Their Properties (17/30)
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Example 5:

Is the "divides" relation on the set of positive integers symmetric?

This relation is not symmetric because 1 | 2 , 2 ∤ 1.

Relations and Their Properties (17/30)

Solution:
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Example 6:

Is the "divides" relation on the set of positive integers antisymmetric?

Relations and Their Properties (18/30)
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Example 6:

Is the "divides" relation on the set of positive integers antisymmetric?

This relation is antisymmetric.

To see this, note that if 𝑎 and 𝑏 are positive integers with 𝑎 ∣ 𝑏 and 

𝑏 ∣ 𝑎, then 𝑎 = 𝑏.

Relations and Their Properties (18/30)

Solution:
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Relations and Their Properties (19/30)

Discrete Mathematics

Transitive

A relation 𝑅 on a set 𝐴 is called transitive

If whenever (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑐) ∈ 𝑅, then 𝑎, 𝑐 ∈ 𝑅, 

for all 𝑎, 𝑏, 𝑐 ∈ 𝐴
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Example 1:

Which of the following relations are transitive?

Relations and Their Properties (20/30)

𝑅7 = 1,1 , 2,2 .
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Example 1:

Which of the following relations are transitive?

Relations and Their Properties (20/30)

𝑅7 = 1,1 , 2,2 .

Solution:

transitive

transitive
transitive

transitive
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Example 2:

Is the "divides" relation on the set of positive integers transitive?

Relations and Their Properties (21/30)
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Example 2:

Is the "divides" relation on the set of positive integers transitive?

This relation is transitive.

Suppose that 𝑎 divides 𝑏 and 𝑏 divides 𝑐. Then there are positive 

integers 𝑘 and 𝑙 such that 𝑏 = 𝑎𝑘 and 𝑐 = 𝑏𝑙. 

Hence, 𝑐 = 𝑎𝑘 𝑙 = 𝑎 𝑘𝑙 , so 𝑎 divides 𝑐. 

It follows that this relation is transitive. 

Relations and Their Properties (21/30)

Solution:
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Notes:

If 𝐴 = ∅, then the empty relation 𝑅 on the set 𝐴 is reflexive, 

symmetric, and transitive vacuously.

------------------------------------------

For any set 𝐴, if the relation 𝑅 on the set 𝐴 is empty set, 

i.e., 𝑅 = ∅, 

then it is irreflexive, transitive, symmetric, and antisymmetric.

------------------------------------------

For any set 𝐴, if the relation 𝑅 on the set 𝐴 is universal set, 

i.e., 𝑅 = 𝑈 = 𝐴 × 𝐴, 

then it is Reflexive, transitive, and symmetric.

Relations and Their Properties (22/30)
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Relations and Their Properties (23/30)

Discrete Mathematics

Combining Relations

The relations 

𝑅1 = {(1 , 1), (2, 2), (3 , 3)} and 

𝑅2 = {(1 , 1), (1 , 2), ( 1 , 3), ( 1 , 4)}
can be combined to obtain

𝑅1 ∪ 𝑅2 =
𝑅1 ∩ 𝑅2 =
𝑅1 − 𝑅2 =
𝑅2 − 𝑅1 =
𝑅1⨁𝑅2 = 𝑅1 ∪ 𝑅2 − 𝑅1 ∩ 𝑅2 =
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Relations and Their Properties (24/30)

Discrete Mathematics

Combining Relations

The relations 

𝑅1 = {(1 , 1), (2, 2), (3 , 3)} and 

𝑅2 = {(1 , 1), (1 , 2), ( 1 , 3), ( 1 , 4)}
can be combined to obtain

𝑅1 ∪ 𝑅2 = { 1,1 , 2,2 , 3,3 , 1,2 , 1,3 , 1,4 }
𝑅1 ∩ 𝑅2 = { 1,1 }
𝑅1 − 𝑅2 = 2,2 , 3,3
𝑅2 − 𝑅1 = { 1,2 , 1,3 , 1,4 }
𝑅1⨁𝑅2 = 𝑅1 ∪ 𝑅2 − 𝑅1 ∩ 𝑅2

= { 2,2 , 3,3 , 1,2 , 1,3 , 1,4 }

Solution:
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Relations and Their Properties (25/30)

Discrete Mathematics

Definition – Composite (1/2)

Let 𝑅 be a relation from a set 𝐴 to a set 𝐵 and 𝑆 a relation 

from 𝐵 to a set 𝐶. The composite of 𝑅 and 𝑆 is the relation 

consisting of ordered pairs (𝑎 , 𝑐), where 𝑎 ∈ 𝐴, 𝑐 ∈ 𝐶, and 

for which there exists an element 𝑏 ∈ 𝐵 such that (𝑎, 𝑏) ∈
𝑅 and (𝑏 , 𝑐) ∈ 𝑆. We denote the composite of 𝑹 and 𝑺 by 

𝑺 ∘ 𝑹.
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Relations and Their Properties (25/30)

Discrete Mathematics

Definition – Composite (2/2)

𝑆 ∘ 𝑅
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Example 1:

What is the composite of the relations 𝑅 and 𝑆, 

where 𝑅 is the relation from {1, 2, 3} to {1, 2, 3, 4} with

𝑅 = {(1 , 1), ( 1 , 4), (2, 3), (3, 1), (3, 4)} and 

𝑆 is the relation from {1, 2, 3, 4} to {0, 1 , 2} with 

𝑆 = {(1 , 0), (2, 0), (3 , 1), (3, 2), (4, 1)}?

Relations and Their Properties (26/30)
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Example 1:

What is the composite of the relations 𝑅 and 𝑆, 

where 𝑅 is the relation from {1, 2, 3} to {1, 2, 3, 4} with

𝑅 = {(1 , 1), ( 1 , 4), (2, 3), (3, 1), (3, 4)} and 

𝑆 is the relation from {1, 2, 3, 4} to {0, 1 , 2} with 

𝑆 = {(1 , 0), (2, 0), (3 , 1), (3, 2), (4, 1)}?

Relations and Their Properties (27/30)

Solution:
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Example 1:

What is the composite of the relations 𝑅 and 𝑆, 

where 𝑅 is the relation from {1, 2, 3} to {1, 2, 3, 4} with

𝑅 = {(1 , 1), ( 1 , 4), (2, 3), (3, 1), (3, 4)} and 

𝑆 is the relation from {1, 2, 3, 4} to {0, 1 , 2} with 

𝑆 = {(1 , 0), (2, 0), (3 , 1), (3, 2), (4, 1)}?

𝑆 ∘ 𝑅 = {(1 , 0), ( 1 , 1), (2, 1), (2, 2), (3, 0), (3, 1)}

Relations and Their Properties (28/30)

Solution:
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Relations and Their Properties (29/30)

Discrete Mathematics

Definition – Powers

Let 𝑅 be a relation on the set 𝐴. 

The powers 𝑅𝑛 , 𝑛 = 1, 2, 3, . . . , are defined recursively 

by

𝑅1 = 𝑅 and  𝑅𝑛+1 = 𝑅𝑛 ∘ 𝑅

The definition shows that 𝑅2 = 𝑅 ∘ 𝑅, 𝑅3 = 𝑅2 ∘ 𝑅, and 

so on.



57©Ahmed Hagag Discrete Mathematics

Example 2:

Let 𝑅 = {(1, 1), (2, 1), (3, 2), (4, 3)}.

Find the powers 𝑅𝑛, 𝑛 = 2, 3, 4,…

Relations and Their Properties (30/30)
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Example 2:

Let 𝑅 = {(1, 1), (2, 1), (3, 2), (4, 3)}.

Find the powers 𝑅𝑛, 𝑛 = 2, 3, 4,…

𝑅2 = 𝑅 ∘ 𝑅 = 1,1 , 2,1 , 3,1 , 4,2

𝑅3 = 𝑅2 ∘ 𝑅 = { 1,1 , 2,1 , 3,1 , 4,1 }

𝑅4 = 𝑅3 ∘ 𝑅 = 1,1 , 2,1 , 3,1 , 4,1

𝑅4 is the same 𝑅3, it is also following that 𝑅𝑛 = 𝑅3, 𝑛 = 5, 6, 7, …

Relations and Their Properties (30/30)

Solution:
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Video Lectures

https://www.youtube.com/playlist?list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz

Discrete Mathematics

All Lectures: 

Lectures #7:  https://www.youtube.com/watch?v=jXHDsYVrhlY&list=PLxIvc-

MGOs6gZlMVYOOEtUHJmfUquCjwz&index=48

https://www.youtube.com/watch?v=57tfpLsEDAY&list=PLxIvc-

MGOs6gZlMVYOOEtUHJmfUquCjwz&index=49

https://www.youtube.com/playlist?list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz
https://www.youtube.com/watch?v=jXHDsYVrhlY&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=48
https://www.youtube.com/watch?v=jXHDsYVrhlY&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=48
https://www.youtube.com/watch?v=57tfpLsEDAY&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=49
https://www.youtube.com/watch?v=57tfpLsEDAY&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=49
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