Discrete Mathematics

Lecture 07

Dr. Ahmed Hagag

Faculty of Computers and Artificial Intelligence

Benha University

Spring 2023

Chapter 9: Relations

- Relations and Their Properties.
- Representing Relations.
- Closures of Relations.
- Equivalence Relations.
- Partial Orderings.

Relations and Their Properties (1/30)

Introduction (1/2)

Relationships between elements of sets are represented using the structure called a relation, which is just a subset of the Cartesian product of the sets.

In mathematics, we study relationships such as those between a positive integer and one that it divides, an integer and one that it is congruent to modulo 5, a real number and one that is larger than it, a real number x and the value $f(x)$ where f is a function, and so on.

Relations and Their Properties (1/30)

Introduction (2/2)

The most direct way to express a relationship between elements of two sets is to use ordered pairs made up of two related elements. For this reason, sets of ordered pairs are called binary relations.

Relations and Their Properties (2/30)

Definition 1:

Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

A binary relation from A to B is a set R of ordered pairs where the first element of each ordered pair comes from A and the second element comes from B.

We use the notation $a R b$ to denote that $(a, b) \in R$ and $a \not R b$ to denote that $(a, b) \notin R$. Moreover, when (a, b) belongs to R, a is said to be related to b by R.

Relations and Their Properties (3/30)

Example 1:

Let $A=\{0,1,2\}$ and $B=\{a, b\}$.
Then $\{(\mathbf{0}, \boldsymbol{a}),(\mathbf{0}, \boldsymbol{b}),(\mathbf{1}, \boldsymbol{a}),(\mathbf{2}, \boldsymbol{b})\}$ is a relation from A to B.

Roster notation (Roster form of set):

$$
R=\{(0, a),(0, b),(1, a),(2, b)\}
$$

Relations and Their Properties (3/30)

Example 1:

Let $A=\{0,1,2\}$ and $B=\{a, b\}$.
Then $\{(\mathbf{0}, \boldsymbol{a}),(\mathbf{0}, \boldsymbol{b}),(\mathbf{1}, \boldsymbol{a}),(\mathbf{2}, \boldsymbol{b})\}$ is a relation from A to B.

Relations and Their Properties (4/30)

Functions as Relations

Recall that a function f from a set A to a set B assigns exactly one element of B to each element of A. The graph of f is the set of ordered pairs (a, b) such that $b=f(a)$. Because the graph of f is a subset of $A \times B$, it is a relation from A to B.

Relations and Their Properties (5/30)

Relations on a Set

Definitions:

- A relation on the set A is a relation from A to A. In other words, a relation on a set A is a subset of $A \times A$.
- The identity relation I_{A} on a set A is the set $\{(a, a) \mid a \in A\}$
- Ex. If $A=\{1,2,3\}$, then $I_{A}=\{(1,1),(2,2),(3,3)\}$

Relations and Their Properties (6/30)

```
كلية الحاسبات والذكاء الإصطناعي
```


Example 2:

Let A be the set $\{1,2,3,4\}$. Which ordered pairs are in the relation $R=\{(a, b) \mid a$ divides $b\}$?

Relations and Their Properties (6/30)

كلية الحاسبات والذكاء الإصطناعي

Example 2:

Let A be the set $\{1,2,3,4\}$. Which ordered pairs are in the relation $R=\{(a, b) \mid a$ divides $b\}$?

Set builder notation:

$R=\{(a, b) \mid a$ divides $b\}$

Relations and Their Properties (6/30)

كلية الحاسبات والذكاء الإصطناعي

Example 2:

Let A be the set $\{1,2,3,4\}$. Which ordered pairs are in the relation $R=\{(a, b) \mid a$ divides $b\}$?

May change
to be:
$a=b$ $a>b$ $a<b$ \ldots

Relations and Their Properties (6/30)

Example 2:

Let A be the set $\{1,2,3,4\}$. Which ordered pairs are in the relation $R=\{(a, b) \mid a$ divides $b\}$?

Solution:

$$
R=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}
$$

R	1	2	3	4
1	\times	\times	\times	\times
2		\times		\times
3			\times	
4				\times

Relations and Their Properties (7/30)

Example 3:

Let A be the set $\{-1,0,1,2\}$. Which ordered pairs are in the following relations:

$$
\begin{aligned}
& R_{1}=\{(a, b) \mid a<b\} \\
& R_{2}=\{(a, b) \mid a>b\} \\
& R_{3}=\{(a, b) \mid a=b\} \\
& R_{4}=\{(a, b) \mid a=-b\} \\
& R_{5}=\{(a, b) \mid a=b \text { or } a=-b\} \\
& R_{6}=\{(a, b) \mid 0 \leq a+b \leq 1\}
\end{aligned}
$$

Relations and Their Properties (7/30)

Example 3: Solution:

Let A be the set $\{-1,0,1,2\}$. Which ordered pairs are in the following relations:

$$
\begin{aligned}
R_{1} & =\{(a, b) \mid a<b\} \\
& =\{(-1,0),(-1,1),(-1,2),(0,1),(0,2),(1,2)\}
\end{aligned}
$$

Relations and Their Properties (7/30)

Example 3: Solution:

Let A be the set $\{-1,0,1,2\}$. Which ordered pairs are in the following relations:

$$
\begin{aligned}
R_{2} & =\{(a, b) \mid a>b\} \\
& =\{(0,-1),(1,0),(1,-1),(2,1),(2,0),(2,-1)\}
\end{aligned}
$$

Relations and Their Properties (7/30)

Example 3: Solution:

Let A be the set $\{-1,0,1,2\}$. Which ordered pairs are in the following relations:

$$
\begin{aligned}
R_{3} & =\{(a, b) \mid a=b\} \\
& =\{(-1,-1),(0,0),(1,1),(2,2)\}
\end{aligned}
$$

Relations and Their Properties (7/30)

Example 3: Solution:

Let A be the set $\{-1,0,1,2\}$. Which ordered pairs are in the following relations:

$$
\begin{aligned}
R_{4} & =\{(a, b) \mid a=-b\} \\
& =\{(-1,1),(0,0),(1,-1)\}
\end{aligned}
$$

Relations and Their Properties (7/30)

Example 3: Solution:

Let A be the set $\{-1,0,1,2\}$. Which ordered pairs are in the following relations:

$$
\begin{aligned}
R_{3} & =\{(a, b) \mid a=b\}=\{(-1,-1),(0,0),(1,1),(2,2)\} \\
R_{4} & =\{(a, b) \mid a=-b\}=\{(-1,1),(0,0),(1,-1)\} \\
R_{5} & =\{(a, b) \mid a=b \text { or } a=-b\} \\
& =\{(-1,-1),(0,0),(1,1),(2,2),(-1,1),(1,-1)\}
\end{aligned}
$$

Relations and Their Properties (7/30)

Example 3: Solution:

Let A be the set $\{-1,0,1,2\}$. Which ordered pairs are in the following relations:

$$
\begin{aligned}
R_{6} & =\{(a, b) \mid 0 \leq a+b \leq 1\} \\
& =\{(-1,1),(-1,2),(0,0),(0,1),(1,-1),(1,0),(2,-1)\}
\end{aligned}
$$

Relations and Their Properties (8/30)

Example 4:

How many relations are there on a set with n elements?
It is not hard to determine the number of relations on a finite set, because a relation on a set A is simply a subset of $A \times A$.
Note: $|A \times A|=|A|^{2}=n^{2}$

Relations and Their Properties (8/30)

Example 4:

How many relations are there on a set with n elements?
It is not hard to determine the number of relations on a finite set, because a relation on a set A is simply a subset of $A \times A$.
Note: $|A \times A|=|A|^{2}=n^{2}$

Solution:

A relation on a set A is a subset of $A \times A$. Because $A \times A$ has n^{2} elements when A has n elements, there are $2^{n^{2}}$ subsets of $A \times A$.

Relations and Their Properties (9/30)

Properties of Relations

There are several properties that are used to classify relations on a set. We will introduce the most important of these relations.

- Reflexive
- Irreflexive
- Symmetric
- Antisymmetric
- Transitive

Relations and Their Properties (10/30)

Reflexive and Irreflexive

A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

A relation R on a set A is called irreflexive if $(a, a) \notin R$ for every element $a \in A$.

not reflexive \neq irreflexive

Relations and Their Properties (11/30)

Example 1:

Consider the following relations on $\{1,2,3,4\}$ are reflexive or irreflexive or not?

$$
\begin{aligned}
& R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}, \\
& R_{2}=\{(1,1),(1,2),(2,1)\}, \\
& R_{3}=\{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}, \\
& R_{4}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}, \\
& R_{5}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}, \\
& R_{6}=\{(3,4)\} .
\end{aligned}
$$

Relations and Their Properties (11/30)

Example 1:

Consider the following relations on $\{1,2,3,4\}$ are reflexive or irreflexive or not?

Solution: R_{3} and R_{5} are reflexive

$$
\begin{aligned}
& R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}, \\
& R_{2}=\{(1,1),(1,2),(2,1)\}, \\
& R_{3}=\{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}, \\
& R_{4}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\},
\end{aligned}
$$

$$
R_{5}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\},
$$

$$
R_{6}=\{(3,4)\} .
$$

Relations and Their Properties (11/30)

Example 1:

Consider the following relations on $\{1,2,3,4\}$ are reflexive or irreflexive or not?
Solution: R_{3} and R_{5} are reflexive R_{4} and R_{6} are irreflexive

$$
\begin{aligned}
& R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}, \\
& R_{2}=\{(1,1),(1,2),(2,1)\}, \\
& R_{3}=\{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}, \\
& R_{4}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}, \\
& R_{5}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}, \\
& R_{6}=\{(3,4)\}
\end{aligned}
$$

Relations and Their Properties (11/30)

Example 1:

Consider the following relations on $\{1,2,3,4\}$ are reflexive or irreflexive or not?
Solution:
R_{3} and R_{5} are reflexive
R_{4} and R_{6} are irreflexive
$R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}$,
$R_{2}=\{(1,1),(1,2),(2,1)\}$,
R_{1} and R_{2} are Not reflexive Not irreflexive
$R_{3}=\{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}$, $R_{4}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$, $R_{S}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}$, $R_{6}=\{(3,4)\}$.

Relations and Their Properties (12/30)

كلية الحاسبات والذكاء الإصطناعي

Example 2:

Is the "divides" relation on the set of positive integers reflexive?

Relations and Their Properties (12/30)

Example 2:

Is the "divides" relation on the set of positive integers reflexive?
Solution:
Because $a \mid a$ whenever a is a positive integer, the "divides" relation is reflexive.

Relations and Their Properties (13/30)

كلية الحاسبات والذكاء الإصطناعي

Example 3:

Is the "divides" relation on the set of integers reflexive?

Relations and Their Properties (13/30)

Example 3:

Is the "divides" relation on the set of integers reflexive?
Solution:
The relation is not reflexive because 0 does not divide 0 .

Relations and Their Properties (14/30)

Example 4:

Is the following relations on the integers are reflexive or not?

$$
\begin{aligned}
& R_{1}=\{(a, b) \mid a \leq b\} \\
& R_{2}=\{(a, b) \mid a>b\} \\
& R_{3}=\{(a, b) \mid a=b\} \\
& R_{4}=\{(a, b) \mid a=b+1\} \\
& R_{5}=\{(a, b) \mid a=b \text { or } a=-b\} \\
& R_{6}=\{(a, b) \mid a+b \leq 3\}
\end{aligned}
$$

Relations and Their Properties (14/30)

Example 4:

Is the following relations on the integers are reflexive or not?
Solution: $\quad R_{1}, R_{3}$, and R_{5} are reflexive

$$
\begin{aligned}
R_{1} & =\{(a, b) \mid a \leq b\} \\
R_{2} & =\{(a, b) \mid a>b\} \\
R_{3} & =\{(a, b) \mid a=b\} \\
R_{4} & =\{(a, b) \mid a=b+1\} \\
R_{5} & =\{(a, b) \mid a=b \text { or } a=-b\} \\
R_{6} & =\{(a, b) \mid a+b \leq 3\}
\end{aligned}
$$

Relations and Their Properties (14/30)

Example 4:

Is the following relations on the integers are reflexive or not?
Solution: $\quad R_{1}, R_{3}$, and R_{5} are reflexive $\quad R_{2}, R_{4}$, and R_{6} are not reflexive
$R_{1}=\{(a, b) \mid a \leq b\}$
$R_{2}=\{(a, b) \mid a>b\} \quad$ (Counter example, $2 \ngtr 2$)
$R_{3}=\{(a, b) \mid a=b\}$
$R_{4}=\{(a, b) \mid a=b+1\} \quad$ (Counter example, $2 \neq 2+1$)
$R_{5}=\{(a, b) \mid a=b$ or $a=-b\}$
$R_{6}=\{(a, b) \mid a+b \leq 3\} \quad$ (Counter example, $2+2 \nsubseteq 3$)

Relations and Their Properties (15/30)

Symmetric and Antisymmetric

A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$.

A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then $a=b$ is called antisymmetric.

Relations and Their Properties (16/30)

Example 4:

Which of the following relations are symmetric and which are antisymmetric?

$$
\begin{aligned}
& R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}, \\
& R_{2}=\{(1,1),(1,2),(2,1)\}, \\
& R_{3}=\{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}, \\
& R_{4}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}, \\
& R_{5}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}, \\
& R_{6}=\{(3,4)\} \\
& R_{7}=\{(1,1),(2,2)\} .
\end{aligned}
$$

Relations and Their Properties (16/30)

Example 4:

Which of the following relations are symmetric and which are antisymmetric?

Solution:

$R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}$,
$R_{2}=\{(1,1),(1,2),(2,1)\}$, symmetric
$R_{3}=\{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}$, symmetric
$R_{4}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$, antisymmetric $R_{5}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}$, $R_{6}=\{(3,4)\}$. antisymmetric antisymmetric
$R_{7}=\{(1,1),(2,2)\}$. symmetric and antisymmetric

Relations and Their Properties (17/30)

كلية الحاسبات والذكاء الإصطناعي

Example 5:

Is the "divides" relation on the set of positive integers symmetric?

Relations and Their Properties (17/30)

Example 5:

Is the "divides" relation on the set of positive integers symmetric?
Solution:
This relation is not symmetric because $1 \mid 2,2 \nmid 1$.

Relations and Their Properties (18/30)

```
كلية الحاسبات والذكاء الإصطناعي
```


Example 6:

Is the "divides" relation on the set of positive integers antisymmetric?

Relations and Their Properties (18/30)

Example 6:

Is the "divides" relation on the set of positive integers antisymmetric?

Solution:

This relation is antisymmetric.

To see this, note that if a and b are positive integers with $a \mid b$ and $b \mid a$, then $a=b$.

Relations and Their Properties (19/30)

كلية الحاسبات والذكاء الإصطناعي

Transitive

A relation R on a set A is called transitive
If whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$

Relations and Their Properties (20/30)

Example 1:

Which of the following relations are transitive?

$$
\begin{aligned}
& R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}, \\
& R_{2}=\{(1,1),(1,2),(2,1)\}, \\
& R_{3}=\{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}, \\
& R_{4}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}, \\
& R_{5}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}, \\
& R_{6}=\{(3,4)\} \\
& R_{7}=\{(1,1),(2,2)\} .
\end{aligned}
$$

Relations and Their Properties (20/30)

Example 1:

Which of the following relations are transitive?

Solution:

$R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}$,
$R_{2}=\{(1,1),(1,2),(2,1)\}$,
$R_{3}=\{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}$,
$R_{4}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$, transitive
$R_{5}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}$,
$R_{6}=\{(3,4)\}$. transitive transitive
$R_{7}=\{(1,1),(2,2)\}$. transitive

Relations and Their Properties (21/30)

كلية الحاسبات والذكاء الإصطناعي

Example 2:

Is the "divides" relation on the set of positive integers transitive?

Relations and Their Properties (21/30)

Example 2:

Is the "divides" relation on the set of positive integers transitive?

Solution:

This relation is transitive.
Suppose that a divides b and b divides c. Then there are positive integers k and l such that $b=a k$ and $c=b l$.

Hence, $c=(a k) l=a(k l)$, so a divides c.
It follows that this relation is transitive.

Relations and Their Properties (22/30)

Notes:

If $A=\emptyset$, then the empty relation R on the set A is reflexive, symmetric, and transitive vacuously.

For any set A, if the relation R on the set A is empty set, i.e., $R=\emptyset$, then it is irreflexive, transitive, symmetric, and antisymmetric.

For any set A, if the relation R on the set A is universal set, i.e., $R=U=A \times A$, then it is Reflexive, transitive, and symmetric.

Relations and Their Properties (23/30)

كلية الحاسبات والذكاء الإصطناعي

Combining Relations

The relations

```
\(R_{1}=\{(1,1),(2,2),(3,3)\}\) and
\(R_{2}=\{(1,1),(1,2),(1,3),(1,4)\}\)
```

can be combined to obtain
$R_{1} \cup R_{2}=$
$R_{1} \cap R_{2}=$
$R_{1}-R_{2}=$
$R_{2}-R_{1}=$
$R_{1} \oplus R_{2}=R_{1} \cup R_{2}-R_{1} \cap R_{2}=$

Relations and Their Properties (24/30)

Combining Relations

The relations

$$
\begin{aligned}
& R_{1}=\{(1,1),(2,2),(3,3)\} \text { and } \\
& R_{2}=\{(1,1),(1,2),(1,3),(1,4)\}
\end{aligned}
$$

can be combined to obtain
Solution:

$$
\begin{aligned}
R_{1} \cup R_{2} & =\{(1,1),(2,2),(3,3),(1,2),(1,3),(1,4)\} \\
R_{1} \cap R_{2} & =\{(1,1)\} \\
R_{1}-R_{2} & =\{(2,2),(3,3)\} \\
R_{2}-R_{1} & =\{(1,2),(1,3),(1,4)\} \\
R_{1} \oplus R_{2} & =R_{1} \cup R_{2}-R_{1} \cap R_{2} \\
& =\{(2,2),(3,3),(1,2),(1,3),(1,4)\}
\end{aligned}
$$

Relations and Their Properties (25/30)

Definition - Composite (1/2)

Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \in A, c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in$ R and $(b, c) \in S$. We denote the composite of \boldsymbol{R} and \boldsymbol{S} by $\boldsymbol{S} \circ \boldsymbol{R}$.

Relations and Their Properties (25/30)

كلية الحاسبات والذكاء الإصطناعي

Definition - Composite (2/2)

Relations and Their Properties (26/30)

Example 1:

What is the composite of the relations R and S,
where R is the relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ with
$R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$ and
S is the relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ with
$S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$?

Relations and Their Properties (27/30)

Example 1:

What is the composite of the relations R and S,
where R is the relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ with
$R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$ and
S is the relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ with
$S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$?
Solution:

Relations and Their Properties (28/30)

Example 1:

What is the composite of the relations R and S,
where R is the relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ with
$R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$ and
S is the relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ with
$S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$?
Solution:
$S \circ R=\{(1,0),(1,1),(2,1),(2,2),(3,0),(3,1)\}$

Relations and Their Properties (29/30)

كلية الحاسبات والذكاء الإصطناعي

Definition - Powers

Let R be a relation on the set A.
The powers $R^{n}, n=1,2,3, \ldots$, are defined recursively by

$$
R^{1}=R \text { and } R^{n+1}=R^{n} \circ R
$$

The definition shows that $R^{2}=R \circ R, R^{3}=R^{2} \circ R$, and so on.

Relations and Their Properties (30/30)

كلية الحاسبات والذكاء الإصطناعي

Example 2:

Let $R=\{(1,1),(2,1),(3,2),(4,3)\}$.
Find the powers $R^{n}, n=2,3,4, \ldots$

Relations and Their Properties (30/30)

Example 2:

Let $R=\{(1,1),(2,1),(3,2),(4,3)\}$.
Find the powers $R^{n}, n=2,3,4, \ldots$

Solution:

$$
\begin{aligned}
& R^{2}=R \circ R=\{(1,1),(2,1),(3,1),(4,2)\} \\
& R^{3}=R^{2} \circ R=\{(1,1),(2,1),(3,1),(4,1)\} \\
& R^{4}=R^{3} \circ R=\{(1,1),(2,1),(3,1),(4,1)\}
\end{aligned}
$$

R^{4} is the same R^{3}, it is also following that $R^{n}=R^{3}, n=5,6,7, \ldots$

Video Lectures

All Lectures: https://www.youtube.com/playlist?list=PLx|vc-MEIsGgZIMVY

Lectures \#7: https://www.youtube.com/watch?v=iXHDsYVrh|YClist=PLx|vcMEDsGgZIMVYOCEtUHUmFUquLjwzธindex=48
https://www.youtube.com/watch?v=57tfpLsEDAYElist=PLxlvcMEDsGgZIMVYOCEtUHUmfUquLjwzסindex=4E

Thank You

Dr. Ahmed Hagag
ahagag@fri.bu.edu.eg

